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Abstract. Research on monolithic logic-based systems has usually left
out an important aspect of information technology systems supporting
medical processes — distribution. Often social restrictions build up by
questions of authority prohibit the implementation of global systems
with omniscient view. Hence, IT in medical domains has to obey these
restrictions by being distributed as well. The direct consequence is the
need for communication and coordination. In this paper, we present an
industrial-size case study in medical appointment scheduling that is en-
visaged to be solved by combining the strength of CLP for local (internal)
problems with the strength of coordination for external problems. The
essence of this approach is the realization of a multi agent system (MAS)
consisting of CLPP-based agents.

1 Introduction

Applications of information technology in medical domains are confronted with
at least two aspects. The first aspect is the support of complex decisions in dia-
gnosis, therapy and administration. Usually, these decisions include some kind
of planning, scheduling or reasoning on expert knowledge. Research on Artificial
Intelligence has made many successful contributions to these fields in general
by introducing action planning, intelligent scheduling and expert systems. Logic
Programming and Constraint Logic Programming (CLP) are among the most
influential paradigms in this context. Nevertheless, research on monolithic logic-
based systems has usually left out the second important aspect of information
technology in medicine — distribution.

Almost all medical processes are distributed spatially and among several
individuals. Social restrictions build up by questions of authority prohibit the
implementation of global systems with omniscient view. Hence, IT in medical
domains has to obey these restrictions by being distributed as well. The direct
consequence is the need for communication and coordination. The notion of
an intelligent agent [10,11] is a recent concept that tries to incorporate the
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In this paper, we present an industrial-size case i i i
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Jocal (internal) problems with the strength of coordination for extegrnal l;l "
The essence of this approach is the realization of a multi agent terr:o(l\;:lg).
consisting of CLP-based agents. After describing the case studS;’sour encral
strategies and the given variables and constraints in section 2 we, l'ocusgon the
coordination of distributed CLP solving in section 3. Discusic;n of related work
and prospects conclude this article.

interaction

2 Maedical appointment scheduling

2.1 Case study — ChariTime

CLP and inte!ligent a‘gents have traditionally been applied to the control and op-
timization of industrial transport and production processes. In contrast to that,
our research is more involved with human processes in the domain of admin-
istration and health care management. Several researchers from GMD FIRST,
Humboldt University Berlin and Technical University Berlin are currently car-
rying out a case study at the cardiological clinic of Charité Berlin, Europe’s
biggest hospital. The cardiological clinic of Charité consists of five wards with
a capacity of altogether over 80 patients, four outpatients’ facilities, in which
different types of medical consulting are done in parallel, and eight diagnostic
units, some of which with several workplaces. The diagnostic units perform over
100 diagnostic examinations each day. These examinations are requested by the
wards, the outpatients’ department and other clinics of Charité.

The present problem is the coordination between the requesting and serving
units. Spatial and organizational distribution of the named units results in dis-
tributed knowledge, distributed control and hence suboptimal patient through-
put and resource usage. Traditional monolithic systems often scale purely in
measure of process instantiations and they usually ignore the problem of re-
stricted information distribution. Therefore, a more local and flexible architec-
ture is needed to control the requesting and serving processes in diagnosis.

We have decided to design and realize a truly distributed multi agent system
which will (hopefully) run on 25 to 30 computers all over the whole cardiological
clinic. This system is called ChariTime. It shall be permanently active to allow
the dynamic allocation of actors and resources to diagnostic tasks, while coping
with failures and emergency cases. We have modeled the given problem as a
coordinated problem solving task among autonomous but benevolent agents.

2.2 General strategies

A usual problem of socially embedded IT systems 1s t.s,cceptancc. T}le 'u!tro-
duction of IT is often a management decision as it is in our case. Especially
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scheduling appointments automatically can have major impact on every day’s
work. Therefore, in ChariTime we have introduced a variety of properties that
can be adjusted by the users and influence the way in which the system schedules
appointments.

A key property is the possibility to restrict the number of fixed appointments
for every type of examination for each day. Fixed appointments are preferably
given to outpatients. Fixed appointments that are not used for outpatients are
given to ward patients. Ward patients that have not been assigned a fixed ap-
pointment are registered in a priority queue that can be used by the diagnostic
unit to flexibly fill the time between fixed appointments.

Appointment relocation is very common in medical appointment scheduling.
The request for an appointment is not only prioritized by a basic patient prior-
ity but also by medical priorities of every examination requested. This priority
is used to determine what we call appointment modifiability. Appointments for
outpatients are not modifiable, appointments that are part of an examination
chain are barely modifiable and appointments for ward patients are easily mod-
ifiable. All this allows for relocating already scheduled appointments in favor of
a high priority new appointment. In case of relocation, all affected entities are
informed and rescheduling is initiated automatically.

To leave some degree of control on appointment scheduling in the hands of
the people working in the diagnostic units, we have introduced a threshold for
automatic booking of appointments. This threshold represents a certain relative
time point in the near future (for example “in one week”). Though the system
may automatically propose appointments lying within the time interval defined
by this threshold, diagnostic unit users must give final permission for the ap-
pointment to become fixed. Appointments lying beyond the time point defined
by the threshold are allowed to be automatically fixed. The semantics of this
threshold is the representation of the desire for controlling one’s own near fu-
ture, while not really caring for appointments that lie far in the future. Another
property in this context is that the future time intervals have to be actively re-
leased by the employees of the diagnostic units. This allows to flexibly determine
uncommon off times.

Requesters like wards or the outpatients’ department can control the schedul-
ing process by providing information on desired time intervals for appointments,
priorities and other restrictions like appointments in other clinics. People in the
outpatients’ department usually receive several alternative appointment possi-
bilities for their requested examinations and can interactively select one or re-
consider their desired time interval. People at the wards can select patients to
become aspirants for fixed appointments or to be registered in the priority queue.

2.3 Modeling

Appointments in general In the following, we will describe a static variant of
our medical scheduling problem. Components of the presented algebraic tuples
are accessed by the “.” operator. So, r.name denotes the projection on the
component with name name of the tuple z.
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In medical appointment scheduling we are doin
optimization over finite domains. Hence,
scheduling horizon.

§ constraint satisfaction and
we have to enforce the existence of a

Definition 1 (Horizon). A horizon h = {0, ... HY, h:2N =M is q finite set
of integers that represents the set of possible starting points for appointments.

Given a constant number of starting points per day nd the day horizon can be
deﬁncdash'={l,...,Hdivnd-{-l}. g

The central term in our domain are appointments. These objects are used to
encapsulate all domain variables, initial domain information and given constants

of an appointment. The definition of an appointment bases on the definition of
tirne slots.

Definition 2 (Time slot). A time slot ¢ is q pair
t = (start,duration), t:(hxN)="T.

start is a variable ranging over the horizon h represcnting the starting point of
t. duration is a constant representing the fired duration of t. m]

Definition 3 (Appointment). An appointment q is a 9-tuple

a = (id, type, slot, desstart, day,
pr,workpl, desworkpl, resource),

a: (ldx AT xT x h x k' x
NxWxWxN)=A

id is an identifier. type refers to an appointment type (see 2.3). slot refers to a
time slot. desstart is a constant that denotes a desired starting time point of the
appoiniment. day is a variable denoting the day of the appointment’s starting
time point. pr is the appointment prionity. workpl is a variable that represents
the choice of a concrete workplace for the appointment (see 2.3). desworkpl

denotes a desired workplace Jor the appointment. resource represents the human
resource demand of the appointment. o

Using the combination of desstart and priority we can implement the described
strategy of appointment relocation and appointment modifiability. When re-
questing the scheduling of a set of new appointments the scheduling of recent
appointments is also reconsidered. Though recent appointments may be relo-
cated in favor of a high priority new appointment request, usually they should
remain at their determined location. This is expressed using the desstart compo-
nent. The priority component of such recent appointments has to be high enough
to avoid superfluous relocation. This is a matter of defining the optimization cri-
terion which is discussed in 3.4. desstart = —1 indicates an appointment that
has to be scheduled as soon as possible. day is a transformed variable that ranges
over A’ and is bound to the appointment starting time point by defining the num-
ber of starting points per day nd and posting the FD constraint a.slot.start #=
nd % (a.day - 1) + Rest (with Rest € {0,...,nd - 1}).
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Provider objects In our application context, diagnostic units are providers.
Every diagnostic unit provides a unique set of examination types. Hence, there
is no choice between diagnostic units for doing a certain examination. Never-
theless, many units have several sub units, called workplaces. In contrast to the
diagnostic units, the capabilities of these workplaces are not disjunct. So we have
to introduce choice on the concrete workplace in a determined diagnostic unit.
This choice is constrained by the appointment types provided by the workplaces.
Appointment types are defined as follows.

Definition 4 (Appointment type). An appointment type at is a 4-luple

at = (id, Start Range, Maz Per Day, ChangcTimes),

at : (Id x 20 x 22 % 22 = AT,
id is an identifier. StartRange is a subset of the horizon h and represents possible
starting times for appointments of this type. MazPerDay is a set of constraints
with dynamic arity restricting the mazimum number of appointments of this type
for each day. ChangeTimes is a sct of binary constraints enforcing constant
buffer times between two appointments of this lype. 0O

Maz PerDay is motivated by the fact that people in the diagnostic units want
to control the maximum number of appointments of the same type each day.
MazPerDay can be easily implemented by using several ECL'PS® atmost
constraints. ChangeTimes is technically motivated by necessary change times
between two distinct examinations of the same type. Given the necessary
change time ¢, ChangeTimes can be implemented by a set of a;.slot.start +
a;.slot.duration + c #<= ay.slot.start #\/ az.slot.start + ay.slot.duration + ¢
#<= a,.slot.start constraints.

Besides the different appointment types, every workplace can have individual
ofl times which restrict possible starting times of appointments. Off times are
usual time slots with a fixed start component.

Definition 5 (Workplace). A workplace w is a triple
w = (id, AppTypes, Off Times),

w: (Id x 247 x 24y = W,

id is an identifier. AppTypes denotes a set of appoiniment types provided by the
workplace. OffTimes is a set of constraints with dynamic arily restricting the
starting times of appointments to form a mutually exclusive schedule. 0

The definition of a diagnostic unit is now canonical.
Definition 6 (Diagnostic unit). A diagnostic unit u is a triple

u = (id, Workplaces, Resources),

u: (Id, 2%, 22"y = .
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id is an idcntiﬁﬁ‘: Workplaces is a set of workplaces belonging to this diagnostic
unit. Resources is a sel of cor_zstmmts with dynamic arity restricting the mazi-
mum number of resources available for parullel appointments at the workplaces.
a

Resources is motivated by the fact that though there may be several workplaces
ina diagnostic unit not all of these may be usable in parallel. For example, staff
is assigned to diagnostic units and not to workplaces. Hence, if an appointment
requires two technical assistants and one doctor (denoted by the resource com-
ponent of the appointment), no other appointment may be possible, though other
workplaces may be free. Resources is implemented using ECL'PS¢’s cumulative
constraint over all workplaces of the diagnostic unit.

Alternatives in choosing workplaces can be modeled in CHIP by using
the diffn constraint, which is very efficient in handling process alternatives.
ECLPS¢ provides only the cumulative constraint, which can be interpreted as
a onc-dimensional specialization of diffn. Nevertheless, it is well known that
diffn can be emulated with cumulative constraints by introducing choice vari-
ables and transforming the given starting time variables to new variables. A new
variable is then bound to the sum of the standard starting time variable and the
product of the choice variable and the horizon. For example in case of two work-
places in a diagnostic unit, the scheduling horizon doubles and the transformed
variables have a domain twice as large as the standard starting time variables.

Requester objects Requesters can be interpreted as representatives of a set
of patients. In appointment scheduling, a patient is mainly defined by his/her
assigned partially ordered set of (open/fixed) appointments and a basic priority.

Definition 7 (Patient). A patient p is a 5-tuple
p = (id, Apps, Order, Excl, pr),
p:(Idx 22 x 22" x 22V x Ny = P.

id is an identifier. Apps is a set of appointments. Order is a set of binary
constraints over appointments, defining a partial order on the patient’s appoint-
ments. Excl is a set of constraints restricting parallel appointments for this
patient. pr is a priorily. =

Since patients can only undergo a single examination per time slot every
appointment has to be executed mutually exclusive. Ezcl guarantees this by

posting corresponding cumulative constraints over the sparse “resource” pa-
tient.

3 Distributed CLP solving

3.1 Motivation for distribution

The problem modeled by the variables and constraints mentioned .al.x?ve coruld
be solved completely by a monolithic CLP solver. Though this possibility exists
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in principle, it is usually not practicable in real medical application setting. The
information on variables and constraints is spatially distributed among the many
departments of the clinic. Even in case of a monolithic solver one would have
to collect all the information from its several sources, transfer it to the solver,
solve the problem and again distribute the results of optimization among the
different users. Hence, even in case of a central optimizer one has to cope with
communication and information consistency problems.

A second argument for distribution is the poor scalability of central solvers.
As soon as not only one clinic of Charité Berlin would be connected to the
appointment scheduling system, a solver would be needed that would have to
- compute the solutions for all connected clinics. As experience with CLP shows,
problems get quickly too complex to be solved efficiently with such an approach.
Since constraint satisfaction is known to be NP-hard, the only way to cope
with this complexity problem is to partition the problem and accept inevitable
suboptimal solutions. At this point, distribution is a should-have.

A third argument against a central solver is privacy. Social structures espe-
cially in hospitals have created a heterogeneous field of competencies and influ-
ences. No director of a single clinic would accept transferring all his or her clinic’s
appointment data to another clinic for global optimization. Even less she or he
would accept automatic control over her/his clinic's appointments from a central
instance. For acceptance, there have to be secure interfaces between realms of
competency that only let pass authorized and restricted information. Decisions
on appointments have to be done at the same locations of competency where
examinations will take place in reality. At this point, distribution is already a
must-have.

A last argument for distribution is redundancy and responsiveness. A crash of
a central solver or missing connectivity would influence the whole hospital lead-
ing to chaos. Master/slave concepts raise the amount of communication overhead
by caching and mirroring. In contrast to that, the crash of a single optimizer in
one diagnostic unit would influence only that unit and its neighbors.

Despite these advantages of distribution, such systems have also major dis-
advantages. The complexity that has been saved within the several solvers is
transfered to the coordination process. Due to this fact, investigations on to-
days distributed solver systems often report poor optimization results or vast
communication overhead. The traditional approach to distributed problem solv-
ing is to design the distribution aspects off-line by statically assigning certain
roles and competences to specific agents. Thus, the problem space is statically
distributed among a more or less fixed set of agent types. Our approach dif-
fers from this by trying to allow on-line modification and reconfiguration of the
MAS structure. Together with measures for internal problem solving complex-
ity and communication overhead, the system shall automatically adapt to the
current problem structure by melting and splitting problem solving knowledge,
tasks and skills. A step towards this target are composable agents. This term
denotes entities that are built of certain independent components, which repre-
sent pieces of knowledge, goals and problem solving capability. By exchanging
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their comPO“enls these ent-it'les. can dy n'amically reconfigure to fit the current
L tuation better. More detailed information on composable agents and dynamic

nfiguration can be found elstfwhere [8,9]. In this article we will focus on the
coordination aspects for controlling the interaction of distributed CLP solvers.

Though the structure of distribution is not fixed in our approach to dis-
tributed CLP solving, one bas to start the system with an initial distribution.
Following natural distribution and competency areas we have defined agents
that care for patients, agel}ts fOf requesters in general and agents for diagnostic
units. Figure 1 shows.a distributed constraint graph with two patient agents
and two diagnostic unit agents. As can be seen in the figure, not only variables
(appointments a, to a7) are denoted by nodes and designated to agents but also
complex constraints (the cap node denotes all constraints mentioned above un-
der the provider’s view). Thin lines illustrate constraints within an agent. Thick
lines illustrate constraints between agents. Dashed lines mean partial order time
constraints, solid lines capacity constraints.

Agent p1 a3
ar
ay da
cap
asg
Agent uz
cap
Agent u) ae as
Agent ;2

Fig. 1. Distributed Constraint Graph

3.2 Implementation tools

While (constraint) logic programining languages are well suited for knowledge-
based computing, like reasoning, planning and optimization, they are not well
suited for distributed computing. Therefore, we have decided to use a hybrid
tool set of languages each of which fits best to the specific problem.

In Charité Berlin we are facing a pure Windows NT environment. Hence, we
are using Microsoft's Distributed Component Object Model (DCOM, a CORBA
like object request broker) and Message Queue Server (MSMQ, a fully trans-
Parent email service for programs) as communication foundations that provide
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useful abstractions from usual commnunication protocols, like TCP/IP. Access to
DCOM and MSMQ is best done via Visual C++ providing the speed we need.
User interfaces can be rapidly developed using Visual Basic. For the internal
realization of problem solving agents we use ECL!PS® since it is highly expres-
sive, cfficient and free of charge for research projects. Additionally, ECL‘PS¢
functionality can be linked into C++ code via a Dynamic Link Library (DLL).
To put it into a nutshell, the system is controlled by C++ code, displays data
with VB code and solves complex problems with ECL'PS® code.

3.3 Mechanisms for coordination

Algorithm 1 solve(A)

{Compute all neighbors holding constraints on Al
N «— comp_neighbors(A);

{Collect declarative information on all constraints imposed on A from all neighbors
and store it in the set of external constraints Cext.}
chl. = 0;
for allne N do
Coxt — Cext UTrequ.ext_constr(n, A);
end for

{Compute internal constraints on A, compute the local optimization function z and
find a solution s to A internally w. r. t. Cexy and Cine.}

Cini — comp-int_constr(A);

z «— comp.int_opt_crit(A);

s — solve.int(A, Cext, Cint» 2);

{The information on external constraints is not static (committed) and asynchronous
solutions of other agents might have invalidated Cext and thus s. Hence, the agent
must inform all neighbors on its new solution to A. Nevertheless, it assuimnes that the
problem is solved and sets the state of A optimistically. To react to asynchronous
information on A the agent calls a monitoring function for each a € A.}
for allne N do

inform(n, A, 8);
end for
for alla € A do

a.solved «— true;

newThread (monitor(a));
end for

In the case of distributed problem solving, it should be the same whether the
constraints between appointments are internal to a unique agent or externally
distributed among several agents. The coordination protocol should allow for
both. The following algorithms describe parts of a first approach to a flexible
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coordination protocol for distributed CLP solvers. Algorithm 1 implements an
extemﬂl request for constraints on the current given set of appointments A that
have to be scheduled. This algorithm describes the view of a requester.

The algorithm has three stages. In the first stage, the agent collects infor-
mation on constraints restricting its set of appointments A. This stage could be
called external constraint propagation. This is done by determining all neighbors
of the agent that hold constraints on A and then requesting declarative descrip-
Lions on their constraints. The degree of declarative description is dependent on
social restrictions mentioned above. A neighbor that belongs to another compe-
tency realm may only answer with a restricted domain on A. A neighbor from
the same competency realm may provide more information (for example all con-
straints described above, which would correspond to providing information on
the whole current schedule) to allow for a higher quality solution. The advan-
tage of CLP in this case is the possibility to encode even complex constraints in
relatively simple string expressions that can easily be exchanged among agents.

In the second internal propagation and search stage, the agent collects its
own internal constraints on A, computes a local optimization criterion on A and
finally wses its internal solving capability to find a labeling for Al

In the third monitoring stage, the agent informs all neighbors on its solution
and starts monitoring on the single appointments in A. This is shown by algo-
rithm 2. Monitoring primarily means watching the acceptance of other agents for
the proposed solution. In case of a NO-GOOD message from one of the neighbors,
the agent retracts its solution to a and restarts the solving process for a.

Obviously, this coordination protocol is not complete, because it may leave
out certain solutions. Nevertheless, it is correct and can avoid cycles by defining
a dynamic priority order over agents for keeping an agent from permanently
retracting its solutions. And it is efficient since it does no backtracking, but
rather a kind of backjumping. Apparently, this protocol works like a usual central
CLP solver going through the stages of constraint propagation, labeling and
monitoring, but all this in a distributed asynchronous manner.

3.4 Example for solving an internal problem

The previous subsection has assumed the existence of an internal problem solver
that can obey external as well as internal constraints. If all external constraints
are communicated in a CLP syntax they can easily be incorporated to a local
CLP solving process. We will focus on the side of a provider to give an example
for this. In the above described coordination scenario a requester would first of
all request information on constraints on a set of open appointments A. The
task of the provider is to answer the request for constraints lying on A according
to its knowledge. The provider is assumed to be benevolent, so it will answer
honestly. Nevertheless, it will follow its own optimization strategy in making

! Since there are usually no deadlines in medical appointment scheduling, we assume
that there will be always a solution for A if the horizon is large enough. The difference

is only the solution’s quality.

10
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Algorithm 2 monitor(a)
{Compute all neighbors of constraints on a. Wait for message or Lime events triggered
by a.}
N « comp_neighbors(a);
e — wait_for_events(a);

{React to the triggered event according to its type.}

select ¢
{In case of another agent sending a “no-good” message

retract s and inform all appropriate neighbors that a

is unsolved again. Adjust state of a accordingly.}
case NO-GOOD:

for allne N do
inform(n,a, 1);

end for

a.solved +— false;

newThread (solve({a})):

{Handle other messages according to a. }
case 7:

end select

proposals for A. In our case, this optimization strategy tries to change as few
recent appointments as possible, but to schedule the appointments in A as soon
as possible in favor of the requester. Given the set of recent appointments ARg,
the set of requested appointments A and a weight for penalizing displacement
displ this optimization strategy can be formalized by

z= Z [(a.slot.start — a.desstart) - a.pr - displ] +
aCAR

Z [(a.slot.start — a.desstart) - a.pr] .
acA

This value has to be minimized.

As usual in CLP, for reaching completeness not only the presented constraints
have to be posted but all free variables have to be labeled by a heuristic search
procedure. Starting time variables a.slot.start and workplace choice variables
a.workpl are the free variables of our problem. Heuristics for choosing the next
variable to label and for choosing the next value to assign to this variable are
manifold and have been reported in several papers on CLP. In most cases, heuris-
tics tailored to the application domain are most successful, since they can incor-
porate specific domain knowledge.

We have designed our labeling heuristics to fit the demands set by the op-
timization function presented above. Since we use a branch-and-bound method
for optimization it is most important to find solutions with expected high opti-
mality first to tighten the bounds on the searched solution early. That means to

11
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Jabel the variables sta-rting with the highest optimality solution candidates even
though risking inconsistency. Then we stepwise deviate from this solution until
consistency is reached. In our example that means to start labeling variables with
high priority first, because th.ereby they won’t be subject to backtracking soon.
In general all workplace choice variables are labeled first, because they often
have much tighter domains than the starting point variables. For value order-
ing we use a special strategy that labels starting point variables initially from
their desired value (a.desvalue) and in case of backtracking cyclically around
(his value (one value left, one value right, two values left, two values right ...).
First simulations show that the combination of these variable and value ordering
heuristics speed up the search for good solutions remarkably in comparison to
standard labeling strategies.

The results of optimization on the provider’s side can be reached back to the
requester for constraining the choices on A. The requester will then calculate its
own optimization function, for example minimizing the patient’s stay in hospital
or trying to create examination chains, and search for an externally and inter-
nally consistent good solution. This solution is handed back to the providers and
they can decide whether the conditions under which they gave their proposals
still hold. In this case, the reported appointments are fixed and go into the re-

cent appointments. Otherwise, the providers can send NO-GOOD messages, thus
restarting the process.

4 Comparison to other DCSP approaches

Most related work in Logic Programming and CLP has considered parallel eval-
uation of goals (and-/or-parallelism) or concurrent approaches using a shared
store [17). These approaches are interesting, but they are not fully applicable
to the distributed setting found in medical appointment scheduling. More ap-
propriate are approaches for solving problems known as Distributed Constraint
Satisfaction Problems (DCSPs). Though there are DCSP models commonly ex-
cepted by several researchers, there are also some alternative models that allow
for a different view on the problem and such for different algorithms.

An excellent, yet a little out-dated overview to DCSP models and algorithms
is given in [15] and [12]. The authors identify four basic elements in solving
DCSPs: centralized or decentralized control, shared or separated search space,
message-passing or shared memory and termination detection. In this sense,
our research tends to do coordinated problem solving with decentralized con-
trol, shared search space, message-passing and without termination detection.
The latter is due to the fact that termination detection is not so important
in dynamic problems, since new tasks may arise on any time. Luo et al. also
Present an interesting classification of DCSP solving approaches. They distinct
variable-based approaches (in which every agent cares for a subset of variables),
domain-based approaches (in which ever agent cares for a subset of values for a
}mique variable) and function-based approaches (in which costly computations
In centralized CSP solving are distributed to speed them up). Our concepts are

12
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designed (o solve problems variable-based, since this is the only approach to
allow for social and natural borders between subproblems. In [12, 14, 13] the au-
thors propose different algorithms to solve DCSPs variable-based, domain-based
and function-based. They all assume a binary DCSP and are hence based on
simple constraint representations via no-good-sets.

An important contribution to DCSP solving has been given by Sycara, Roth,
Sadeh and Fox in [20] in which they present Distributed Constrained Heuristic
Scarch. They identify important characteristics of collaborative problem solving:
global system goal to satisfy all constraints and minimize backtracking (equiv-
alent to computational effort), concurrent and asynchronous variable instanti-
ations, limited communication, incomplete information and potentially major
ripple effects of backtracking. They also characterize the design trade-off for a
proper level of distribution in a system for a given communication bandwidth,
but do not address this problem in the paper. Though their proposal is mainly
focussed on job-shop-scheduling they have already used a combination of dis-
tributed constraint propagation (in form of communicating resource demands)
and distributed heuristic search (called asynchronous backjumping). The authors’
introduction of special resource monitoring agents and job agents and the ac-
cording cooperation protocol can be seen as predecessors of the ideas presented
in this article. Sycara et al. characterize the effect of different decompositions
and their characteristics to be a subject of future research.

Being another classical reference in DCSP, the work of Yokoo and Ishida in-
troduces a DCSP model that simply assigns the variable nodes of a binary CSP
graph to the different agents. Hence, this is a variable-based approach. Their
main contribution lies in the development of distributed search algorithms, like
asynchronous backtracking and asynchronous weak-commitment search. The ear-
lier versions (collectively presented in (23] and [25]) relied on the assumption,
that every agents cares for just one variable. Newer versions ([24]) overcome this
restriction by allowing complex local problems. All these algorithms are correct
and complete. To coordinate the different forms of asynchronous backtracking,
the algorithms establish a static or a dynamic order among agents that deter-
mines the cooperations patterns between agents. In their work, Yokoo and Ishida
mainly cover search and not so much constraint propagation. Additionally, the
assumnption of simple binary constraints restricts the applicability in real-world
settings. Nevertheless, their coordination procedures have influenced much other
work in this field. The same holds for the coordination protocols in this article.

Also in [25] two constraint propagation techniques are mentioned: a filtering
algorithm reported in [22] and 8 hyper-resolution-based consistency algorithm
described in [2]. The filtering algorithm achieves arc-consistency by communi-
cating the domains of each process to the neighbors and removing values from
these domains that cannot satisfy the given constraints. The hyper-resolution-
based consistency algorithm applies a logical transformation rule to combine
communicated constraints and information on an agent’s domain to form tighter
constraints. Both algorithms do not transmit abstract constraint information
but concrete domains or no-good-sets of variable labelings that are inconsistent.

13



Coordinating Distributed CLP-Solvers in Medical Appointment Scheduling 201

Hence, one weakness of these algorithms is the vast amount of communication
since enumerating domains or constraints as simple data types can be highly
space-demanding. The coorc!ination protocol presented here uses high-level logic
description to pass constraints from one agent to another, thus saving com-
nunication overhead. This is related to the work presented in [26]. Zhang and
Mackworth propose a distributed arc-consistency check that uses an abstract
constraint propagation facility and joins the communicated constraints with in-
ternal constraints. They also present complexity results for acyclic constraint
graphs.

Another pre-processing distributed arc-consistency algorithm DisAC4 is dis-
cussed in [21] (see also [16]). It is a distributed version of the sequential AC4
algorithm and assumes that every agent is assigned exactly one variable. By
simulating the behavior of several such agents more than one variable can be
checked by a single agent.

Another approach to DCSP solving does not try to solve the DCSP with new
distributed propagation or search methods but to facilitate existing CSP solvers
to solve the problems local to an agent and then to combine the results of these
solvers. An early reference on this approach is [1]. They introduce the notion of
interface problems by partitioning a DCSP along variable nodes and not as usual
along constraint arcs. All variable nodes that belong to more than one agent form
a new problem — the interface problem. The variable nodes not belonging to
the interface problem can be labeled independently from other variable nodes.
Such, solving the interface problem and then solving the independent problems
eventually using backtracking solves the whole problem. A disadvantage is the
need for a global instance for finding the solution to the interface problem and
collecting the solutions of the independent problems. Solotorevsky and others
([19]) follows a similar strategy by defining canonical DCSPs which consists of
a special constraint graph connecting all independent local constraint graphs.
Similar to Berlandier and Neveu they use common CSP solvers to solve the
partitioned problems. All these authors assume a given partitioning of the DCSP
and facilitate a global instance for guiding the solving process.

Solotorevsky and Gudes have applied their DSCP approach to time tabling
in a hospital [18]. Decker and Li apply their generalized partial global planning
approach to patient scheduling [3). Despite these research efforts, we do not

know any MAS that actually solves the problems we are facing in the ChariTime
project.

5 Conclusion

Until now, the concepts presented here are just a vision. Nevertheless, our work-
ing groups have achieved promising results in central optimization by constraint-
based approaches. Examples are job-shop-scheduling and time-tabling problems
[4,5).

The efforts in distributed CLP solving on the conceptual level and ChariTime
on the applicational level are based on recent research in distributed production
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control [6] and include besides the presented concepts business process modeling
based on Petri Nets [7]). The ChariTime team is currently beginning realization
and we hope to achieve first results at the end of 1999.

References

1.

10.

11.

12.

13.

14.

15.

P. Berlandier and B. Neveu. Problem partition and solvers coordination in dis-
tributed constraint satisfaction. In Proceedings of the Workshop on Parallel Pre-
cessing in Artificial Intelligence (PPAI-95), Montréal, Canada, 1995.

J. de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89),
pages 290-296, 1989.

K. Decker and J. Li. Coordinated hospital patient scheduling. In Procecdings of
the Third International Conference on Multi-Agent Systems (ICMAS-98), Paris,
France, 1998.

H.-J. Goltz and U. John. Methods for solving practical problems of job-shop
scheduling modelled in CLP(FD). In Proceedings of the Conference on Practical
Application of Constraint Technology (PACT-96), London, UK, 1996.

H.-J. Goltz, G. Kiichler, and D. Matzke. Constraint-based timetabling for univer-
sities. In Procecdings of the Eleventh International Conference on Applications of
Prolog (INAP-98), pages 75-80, 1998.

M. Hannebauer. B-DICE — A BDI control environment for manufacturing systems.
Master’s thesis, Humboldt-Universitat zu Berlin, Germany, 1998.

M. Hannebauer. From formal workflow models to intelligent agents. In Proceedings
of the AAAI-99 Workshop on Agent Based Systems in the Business Conlexzt, pages
19-24. Technical Report WS-99-02, AAAI Press, 1999.

M. Hannebauer, H.-D. Burkhard, J. Wendler, and U. Geske. Composable agents for
patient flow control — preliminary concepts. In Proceedings of the DFG-SPP Work-
shop “Intelligente Softwareagenten in betriebsunrtschaftlichen Anwendungsszenar-
ien”, pages 223-231. llmenau, Germany, 1999.

M. Hanncbauer and R. Kiihnel. Dynamic reconfiguration in collaborative problem
solving. In Proceedings of the Eighth Workshop on Concurrency, Specification and
Programming (CS€P-99), pages 71-82, Warsaw, Poland, 1999.

M. N. Huhns and M. P. Singh, editors. Readings in Agents. Morgan Kaufmann
Publishers, 1998.

N. R. Jennings and M. J. Wooldridge. Agent Technology — Foundations, Applica-
tions, and Markets. Springer, 1998.

Q. Y. Luo, P. G. Hendry, and J. T. Buchanan. Heuristic search for distributed
constraint satisfaction problems. Research Report KEG-6-92, Department of Com-
puter Science, University of Strathclyde, Glasgow G1 1XH, UK, 1992.

Q. Y. Luo, P. G. Hendry, and J. T. Buchanan. A hybrid algorithm for distributed
constraint satisfaction problems. Research Report RR-92-62, Department of Com-
puter Science, University of Strathclyde, Glasgow G1 1XH, UK, 1992.

Q. Y. Luo, P. G. Hendry, and J. T. Buchanan. A new algorithm for dynamic
constraint satisfaction problems. Research Report RR-92-63, Department of Com-
puter Science, University of Strathclyde, Glasgow G1 1XH, UK, 1992.

Q. Y. Luo, P. G. Hendry, and J. T. Buchanan. Comparison of different approaches
for solving distributed constraint satisfaction problems. Research Report RR-93-
74, Department of Computer Science, University of Strathclyde, Glasgow G1 1XH,

UK, 1993.

15



16

17.
18.

19.

20.

21.

23.

pL

25.

26.

Coordinating Distributed CLP-Solvers in Medical Appointment Scheduling 203

T. Nguyen and Y. Deville. A distributed arc-consistency algorithm. Technical Re-
port 1348, Dépt Informatique, Univ. Cath. de Louvain, Louvain-la- .
1995.

V. A. Saraswat. Concurrent Constraint Progamming. MIT Press, 1993,

G. Solotorevsky and E. Gudes. Solving a real-life time tabling and transportation
problem using distributed CSP techniques. In Proceedings of CP-96 Workshop on
Constraint Applications, Cambridge, USA, 1996.

G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed
constraint satisfaction problems (DCSPs). In Proccedings of the Conference on
Constraint-Processing (CP-96), 1996.

K. P. Sycara, 5. F. Roth, N. Sadeh, and M. S. Fox. Distributed constrained heuristic
search. [EEE Transactions on Systems, Man, and Cybernetics, 21(6):1446-1461,
1991.

G. Tel. Distributed control algorithms for AL In G. Weiss, editor, Multiagent
Systems — A Modern Approach to Distributed Artificial Intelligence, pages 562-
569. MIT Press, 1999.

D. Waltz. Understanding line drawing of scences with shadows. In P. Winston,
editor, The Psychology of Computer Vision, pages 19-91. McGraw-Hill, 1975.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint
satisfaction problem: Formalization and algorithms. /EEE Transactions on Knowl-
edge and DATA Engineering, 10(5), 1998.

M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm for
complex local problems. In Proceedings of the Third International Conference on
Multi-Agent Systems (ICMAS-98), pages 372-379, Paris, France, 1998.

M. Yokoo and T. Ishida. Search algorithms for agents. In G. Weiss, editor, Multi-
agent Systems — A Modern Approach to Distributed Artificial Intelligence, pages
165-199. MIT Press, 1999.

Y. Zhang and A. K. Mackworth. Parallel and distributed algorithms for finite con-
straint satisfaction problems. In Proceedings of the IEEE-Symposium on Parallel
and Distributed Processing, pages 394-397, 1991.

Neuve, Belgium,

16



